If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-25x-27=0
a = 2; b = -25; c = -27;
Δ = b2-4ac
Δ = -252-4·2·(-27)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-29}{2*2}=\frac{-4}{4} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+29}{2*2}=\frac{54}{4} =13+1/2 $
| -1+(6x-1)=-2(1-6x | | 3(4×-2)=12x | | 4x+9/3=5 | | t-Ι-32Ι=5 | | 6x+5+3x=31 | | 2(1x+4)=4 | | 1/3+4/5b=71/15 | | 3x+3=4x+0 | | 1.8(3.6r-6.9)=49.2 | | 2+x=-6x-68 | | 1/8g+7=6 | | 9p=5(8p+9) | | (x/2)-(8/5)=(1/2)-(x/5) | | x^2=-5/7x | | 8y-(2y+3)=9 | | 4-9h=10h | | 2x/3+1=2-x/6 | | 4x-10=78-4x | | -2(6+x)=-14-2x | | 18-6q+2=38 | | -6+6r=8r | | (10x+1)+(9x-1)=180 | | -x-2=-10+3x | | 18−6q+2=38 | | (y^2+3)^2+y^2=53 | | x/6+5=68 | | 9-8w=-8w | | (x+7)/2=-3 | | 49(t)=4.9t^2 | | x/5+6=68 | | 7x+4+4x=136 | | -8j=-5j-3j |